Most Popular Solar UV Tests Include MIL-STD-810G Method 505.5 and ASTM Standards

by on Sep.16, 2015, under Military

Cuvmain_1c7d3a6c-c84b-4aac-a90f-bee5561e45f9all it what you want: solar radiation, UV exposure, accelerated weathering.  When is this testing necessary or advisable and which test should be used?

When is easy: You should perform solar testing if your product will be exposed to sunlight.

Which test is more difficult to answer.  There are several different types of solar tests.

One of the more popular ones is MIL-STD-810G, Method 505.5.  At 15 pages with an additional 15 pages of annexes (3 of them), the specification is detailed.  This section of the standard serves two purposes:

  1. Determine heating effects from sunshine impinging directly on equipment (Procedure I)
  2. Identify material degradation from sunshine (Procedure II)

Procedure 1 is primarily a heating effect test and is usually performed with halogen lamps following a diurnal cycle profile.  The potential impact of solar radiation heating effects include:

  • Jamming or loosening of moving parts
  • Changes in strength and elasticity
  • Loss of seal integrity
  • Changes in electrical or electronic components
  • Premature actuation of electrical contacts
  • Changes in characteristics of elastomers and polymers
  • Blistering, peeling, and de-lamination of paints, composites, and surface laminates
  • Softening of potting compounds
  • Weakening of solder joints and glued parts

Procedure 2 is a combination actinic and heating effects test using full spectrum lamps.  Material effects of solar radiation, primarily from UV exposure, include:

  • Fading of fabric and plastic color
  • Break down and fading of paints
  • Deterioration of natural and synthetic elastomers and polymers through photochemical reactions initiated by shorter wavelength radiation (especially acute for high strength polymers such as Kevlar)

As with other 810G Methods, 505.5 is a general outline and it is left to the end user to create a test plan to align the test with the anticipated environment.

Following are additional popular solar testing standards, both of which MET Laboratories is accredited for:

ASTM G154 – This test consists of exposing samples to 42 cycles of 8 hours of UVA-340 ultraviolet light at 60°C, followed by 4 hours of condensation (mimicking dew) at 50°C. Overall, this test involves 21 days of exposure.

ASTM G155 – In this test, xenon arc lamps simulate full-spectrum sunlight within a controlled test chamber.  Because xenon arc light is most similar to natural sunlight, this standard is often used for outdoor weatherization testing.

MET Labs performs fully-accredited MIL-STD-810 Method 505.5 solar testing along with ASTM G154 and ASTM G155 testing. We also work with customers to develop custom test plans to meet special requirements.

Work with the leader in environmental simulation testingcontact us today.

Leave a Comment :, , , , , , , , , , , , , , , , , , , , , , , , more...

RS105 Testing Determines EMP Susceptibility of Military and Commercial Electronics

by on Jun.01, 2015, under EMC, Military

RS105 Parking lot setup photo 2Recently, MET Labs performed High Altitude (or Nuclear) Electromagnetic Pulse (HEMP or NEMP) susceptibility testing of U.S. Navy vendor electronics at an outdoor test area in Maryland.

The test method used was RS105 from MIL-STD-461.   RS105 addresses the risk of radiated exposure to an EMP event. (CS116 is the MIL-STD-461 test method that addresses conducted – rather than radiated – immunity for EMP).

While EMP susceptibility is increasingly being measured in a number of industries and applications, including data centers, it has traditionally been used for electrical/electronic equipment installed in military environments.  Much of this equipment is protected by hardened shielded enclosures, but that which is exposed must have its own built-in shielding effectiveness.

The test setup looks, from the side, like an elongated tent structure, with a surge generator and resistive load on either end on the ground.  Rows of wires run between them, up and over a tall support structure in the middle.  The wires are evenly distributed, and create a pulsed 50,000 V/m field that radiates down onto the equipment under test (EUT) and a conductive ground plane.  This mimics the high amplitude, short duration broadband electromagnetic pulse of a nuclear or similar event.

The RS105 test procedure is:

  • Start at 10% of specified level
  • Verify waveform
  • Apply pulse 5 times (not more than one per minute)
  • Rotate EUT 90 degrees, and pulse 5 more times
  • Rotate another 90 degrees and pulse 5 more times
  • Monitor for signs of degradation

An outside test area, as was used in Baltimore, is preferred due to the relative lack of reflective material.  And a large EUT will often necessitate a large test area, as the septum must be three times as high as the EUT.

This testing was conducted to the specifications of MIL-STD-461E, but note that MIL-STD-461G was recently released in draft form.  Contact us to learn how the changes in this new standard affect new product development.

Need to know the EMP susceptibility of your commercial or military electronics?   Contact us today for a free quotation.

Leave a Comment :, , , , , , , , , , , , , , , , , , , , , , , , more...

New MIL-STD-461G Draft for Military EMI Control Is Released

by on Apr.27, 2015, under EMC, Military

TankEMCAfter a long wait, the draft of MIL-STD-461G has been published.  MIL-STD-461 is the U.S. Department of Defense’s (DoD) primary standard for the control of electromagnetic interference (EMI) characteristics of subsystems and equipment.  Draft G was prepared by a committee consisting of representatives of the Army, Air Force, Navy, other DoD agencies, and industry.

MET Labs combed through -461G line by line.  Changes range from simple (a “MIL-STD-451G” typo on the cover that will surely be corrected) to complex (new lightning and ESD test methods).

Following are the most significant updates from MIL-STD-461F (the most recent current version): Interconnecting leads and cables: clarification added. In particular, for free standing EUTs, a table is now included for routing cables.
Figure 4 (Free Standing EUT in Shielded Enclosure) and Figure 5 (Free Standing EUT on Ground Plane): Cables placed on table with ground plane.
5.11 of 461F, CS106, removed.  From this point forward, the section numbers will no longer match between 461F and 461G. Setup (CS114): clarification added that monitor probe is placed around a second fixture and terminated with 50Ω.

5.15 CS117, Conducted Susceptibility, Lightning Induced Transients, Cables and Power Leads: This is a new test method, which is based on RTCA DO-160 Sec. 22 Lightning Induced Transient Susceptibility.

5.16 CS118, Personnel Borne Electrostatic Discharge: This is a new test method, which is based on IEC 61000-4-2 ESD.

5.18.1 RE102 Applicability: Note restricting upper frequency range of test based on highest intentionally generated frequency within the EUT is removed. (All tests performed up to 18GHz.) C. (2) (b) 2. For free standing EUT, antenna heights shall be determined as described in and 3. and 3: changed word “width” to “area”.  This will result in additional test positions for all EUTs with a height greater than the smallest part of the antenna beam width curve. e. EUT Testing (RS103): word “width” changed to “area”.  This will result in additional test positions for all EUTs with a height greater than the smallest part of the antenna beam width curve.

Note: This draft, dated March 2, 2015, has not been approved and is subject to modification.

Want a PDF copy of your own to study?  Register and download one from the official DLA Assist site, or we’ll email you a copy if you drop us a line at

Have an immediate MIL-STD test need?  Contact us today for a free quotation.  MET Labs has a rare combination of accreditations, experience, and capabilities, performing the full suite of military EMC and military environmental tests under one roof on both coasts.

Leave a Comment :, , , , , , , , , , , , , , , , , more...

UK & Australian Companies May Be Exempt from ITAR Licensing for MIL-STD Testing

by on Feb.02, 2015, under Military

ITARForeign manufacturers of products that require U.S. Military Standard (MIL-STD) testing need to comply with the Arms Export Control Act and the International Traffic in Arms Regulations (ITAR).

Obtaining ITAR licensing and development of technical agreements can be a lengthy process.  Fortunately, clients in the United Kingdom and Australia can simplify the process and bypass ITAR licensing requirements using exemption programs available through Defense Trade Cooperation Treaties to which the United States, United Kingdom, and Australia are signatories.

Once recognized under these treaties, clients are part of the UK or Australian Approved Communities (AC) and are listed under the DDTC’s Treaty Reference System (TRS).  TRS is a resource operated by The Directorate of Defense Trade Controls that helps U.S. Exporters confirm whether or not UK or Australian organizations are exempt from ITAR licensing requirements.

More information can be found at the DDTC’s website for Defense Trade Cooperation Treaties.  Exemption programs for United Kingdom and Australia are also described in the ITAR regulation under 22 CFR 126.16126.17.

MET Labs is experienced in the rapid acquisition of ITAR licenses for companies in many countries.  Contact us today for a free assessment of the cost and timing of ITAR compliance for your products.

Leave a Comment :, , , , , , , , , , , , , , , , , more...

Environmental Testing – Like HALT – Improves Product Reliability & Ruggedness

by on Dec.15, 2014, under Military

McKinley Air Force Lab can reduce air temperature to -80°F

Environmental testing has nothing to do with an evaluation of the earth’s environment.   Not the environmental testing we’re writing about here anyway.

Also known as environmental simulation, environmental testing involves putting your electronic product through environmental extremes and then determining what hardware failures occur.   This process is crucial for pinpointing design flaws for ensuring the reliability and ruggedness of your equipment.

Environmental testing is split into two types: climatic and dynamic.

Climatic testing is performed in climatic test chambers.  They range in size from desktop to hangar-sized.   The McKinley Climatic Laboratory at Eglin Air Force Base in Florida is 55,000 square feet, and accommodates a hulking Lockheed C5 Galaxy transport aircraft.

Dynamic testing is performed on shakers and similar devices.  It includes testing for shock, vibration, and earthquake/seismic.  See a video of MET’s MIL-S-901D Hammer Shock rig being constructed and deployed.

Highly Accelerated Life Testing (HALT) is a form of environmental testing that combines climatic and dynamic components.  It integrates vibration into the chamber environment, where temperature and humidity extremes can also be applied simultaneously.   HALT is a faster, more effective version of the old environmental stress screening (ESS).

Testing should be conducted during the development of your hardware, so that all failures can be determined before the design is finalized.   It is much better to fail during environmental testing than to fail in service, possibly causing user harm and often leading to warranty or recall expense.

With HALT, failure is a good thing, although it might not feel like it.  It serves as a catalyst for redesign that improves the durability and ruggedness of the device, allowing you to lower your product’s infant mortality rate and reduce claims under your product warranty.

MET Labs owns and operates dozens of environmental test chambers and an impressive shock/vibe/seismic capacity in multiple locations across North America, as well as 24-hour HALT Testing on both coasts.  Contact us for a free fast-response quotation.

Leave a Comment :, , , , , , , , , , , more...

MIL-STD-461 for Military EMC & GR-1089-CORE for NEBS Telecom EMC Share Some Requirements

by on Sep.30, 2014, under EMC, Military, NEBS

The electromagnetic compatibility (EMC) requirements for telecom and military equipment are considered among the most difficult to meet for any industry.  Not many electronics manufacturers conduct testing for both requirements, but it happens occasionally.  For those who do, it’s an advantage to pursue both at the same time, as there is some overlap.  Following is a short MET Labs overview on some of the primary similarities and differences.

One of MET's ESD Testing Rooms

MIL-STD-461 is the primary EMC standard for military approvals.  The current version is MIL-STD-461F, but previous versions may still be specified in U.S. military contracts. 

GR-1089-CORE is the primary EMC standard for telecommunications (NEBS) equipment.  The current version is Issue 6.

MIL-STD-461  is similar to section 2 and 3 of GR-1089 in that they both include EMC conducted and radiated emissions and susceptibility requirements, however the test methods are quite different.

For emissions, MIL-STD-461 requires use of a peak detector and the limits are more stringent for some platforms, like Army Ground.  On the other hand, the radiated emissions test method could be considered less thorough because the test antenna and EUT are placed in one position, while for GR-1089 radiated emissions, the EUT is rotated 360 degrees and the antenna height is adjusted to find the maximum radiated emissions.

For susceptibility testing, MIL-STD-461 test method CS114 is similar to GR-1089 conducted susceptibility.  Test method CS115 is somewhat similar to GR-1089 section 2 EFT.  RS103 is similar to GR-1089 radiated susceptibility, however, for some military platforms, the test level is much higher than GR-1089 (up to 200V/m).

MIL-STD-461 does not include ESD testing, although many military test programs include IEC 61000-4-2 ESD testing along with -461.  GR-1089 includes ESD testing in section 2 and references IEC 61000-4-2 for the test procedure.

Another occasionally-referenced military standard – MIL-STD-1399-070 DC Mag Field – is not like any GR-1089 test.  This is a 1600A/m DC field, which is quite strong.  If the EUT has no magnetic sensors, compass, or other magnetically sensitive components, it shouldn’t be a problem.  If the EUT does have those components, it would have to be specifically designed to withstand this test.

Read more about testing to MIL-STD-461 or GR-1089-CORE, or request a free quotation for an upcoming test need.

Leave a Comment :, , , , , , , , , more...

MIL-STD-461 EMC Testing FAQs for Military and Marketing Requirements

by on Sep.08, 2014, under EMC, Military

MIL-STD-461 is the standard that defines the test limits, test levels, and test procedure for various electromagnetic phenomena for electronic equipment used by the U.S. Army, Navy, and Air Force on all platforms (ground, sea, and air).  MIL-STD-461F is the latest version.  Following are answers to common questions about this often-utilized military EMC standard.

Where can I find MIL-STD-461 and how much does it cost?
The standard is free and approved for public release.  It can be downloaded from a number of sites, but we recommend using the official U.S. Defense Logistics Agency (DLA) ASSIST site.  This site requires registration and a wait for approval.

What is included in MIL-STD-461?
Test methods cover electromagnetic emissions, which are an unintended, but unavoidable byproduct of every electronic device, as well as electromagnetic susceptibility, which is a measure of the equipment under test’s (EUT) ability to withstand electromagnetic disturbances.

Test methods include specific types of conducted, radiated, transient, and continuous emissions and susceptibility tests.  See a full list of test methods on MET’s Military EMC Testing page.

The first few sections define general aspects of the standard and testing, such as terminology, test facilities, test equipment, setup of the EUT, applicable tests for equipment to be used on various platforms, etc.

Section 5 contains a test procedure for each test method, which defines the test equipment needed, instructions for setup, and a procedure for how to conduct the test.

Is compliance with MIL-STD-461 mandatory?
MIL-STD-461 is usually only required when part of a specific military contract between the U.S. military and an electronic equipment manufacturer.

The contract would specify the specific test methods within -461 which need to be performed and passed by the equipment being built for the military.

MIL-STD-461 testing is sometimes voluntarily performed by electronic equipment manufacturers for marketing purposes, to attract possible military contracts and/or for quality purposes, to ensure a rugged design.

I want to voluntarily perform MIL-STD-461 testing and am not worried about my EUT’s susceptibility to electromagnetic disturbances.  What are the best test methods for determining compliance with the standard’s electromagnetic emissions requirements?
CE102 and RE102 are the most applicable test methods for this.

CE102, conducted emissions, power leads, 10 kHz to 10 MHz, is performed to verify that electromagnetic emissions from the EUT do not exceed the specified requirements for power input leads, including returns.

This will ensure that the EUT does not cause interference to other electronic equipment operating from the same power source, since the emissions can conduct along the supply lines.

A special piece of test equipment called a line impedance stabilization network (LISN) is connected in series with each conductor of the input power lines to the EUT.

The LISN establishes a 50 Ohm impedance on the power line and has a coaxial measurement port, which allows for connection to a 50 Ohm spectrum analyzer for measurement of the RF emissions.

The EUT is exercised in a way typical of its normal use and the emissions are compared to the limit.  If CE102 emissions exceed the limits, the tests are considered not compliant.

RE102, radiated emissions, electric field, 10 kHz to 18 GHz, is performed to verify that electric field emissions from the EUT and its associated cabling do not exceed specified requirements.

This will ensure that radiated emissions from the EUT do not cause interference to other electronic equipment operating nearby.

The EUT and test antenna are set up within a shielded test enclosure, which is internally lined with RF absorbent material.

The shielded enclosure prevents RF ambient noise from entering the test area, while the RF absorbent material reduces RF reflections from the metallic chamber walls, allowing for accurate radiated RF measurements of the EUT emissions with a test antenna.

The test antenna is connected through coaxial cable and chamber wall bulkhead connectors to the spectrum analyzer outside the test chamber.

The EUT is exercised in a way typical of its normal use and the emissions are compared to the limit.  If RE102 emissions exceed the limits, the tests are considered not compliant.

For MIL-STD-461 testing for marketing purposes only, does MET issue a test report?
MET can issue a test report and a one-page certificate upon completion of testing.

The test report and certificate would not guarantee acceptance of the product by the U.S. military.  However, you are free to use your engineering judgment to make claims of compliance for similar projects, based on the test report and certificate provided.

MET Labs has a reputation for high quality test results and our test reports will increase the credibility of your marketing claims.

Request a free quotation for MIL-STD testing for military or marketing requirements.

Leave a Comment :, , , , , , , , , more...

MIL-STD-810G Change Notice 1 Incorporates Many Climatic & Dynamic Updates

by on Jul.16, 2014, under Military

The U.S. Department of Defense (DoD) recently issued Change Notice 1 to MIL-STD-810G, Environmental Engineering Considerations and Laboratory Tests.  This change notice incorporates more changes – climatic and dynamic – than any previous revision of -810.

A PDF of Notice 1 is available here.  It’s a bulging 1,058 pages, over 280 pages more than the Revision G alone and more than twice as many pages as Revision F.  Changes are marked by lines in the margins.   

Major changes include:

  • In Part 1, a significantly expanded section on the Life Cycle Environmental Profile (LCEP)
  • In Part 2, all test methods – 500 through 528 – have been updated with a new note
  • Only Method 528 can be called out in blanket fashion now
  • A rewrite of mechanical shock
  • Additional guidance in combining procedures

MIL-STD-810 is used by both the U.S. military and industry to assure that the environmental design and test limits of equipment match the requirements that equipment will face in actual use.

Whether a military product must be tested to Change Notice 1 is dependent on the DoD contract.  The DoD uses the product’s life cycle environmental profile and its anticipated deployment region to determine which standard version to specify.

MET Labs is an elite 3rd Party Test Lab for Military and Commercial Aircraft equipment testing, and has top-flight experience working with every top defense contractor and commercial aircraft manufacturer and many of their suppliers.  Contact us for a rapid-response quote for EMC or Environmental Simulation testing.

2 Comments :, , , , , more...

MIL-STD-461F Testing Deviations Save Time and Money

by on Mar.10, 2014, under EMC, Military

Some Military EMC testing projects are routine.  This post describes a recent one that wasn’t.

Hydraulics International, Inc. asked us to test its four-wheeled 2-ton hydraulic power generator (pictured in MET’s Military EMC chamber), which is used to check the flight control of the Bell Boeing V-22 Osprey.  The V-22 Osprey is well known for its Rolls-Royce engines that tilt, allowing it to take off like a helicopter and fly like an airplane. 

The test plan was based on MIL-STD-461F, but MET was able to get approval on a couple deviations to save the customer time and money. 

The first deviation was to decrease the unit’s RPM during testing.  The test procedure called for measurements taken at 2,500 RPM, but MET was able to justify a lower RPM by proving that the unit’s electronics would not be affected by its engine speed.  This deviation was important because the EUT’s 160 HP diesel engine would heat the military test chamber rapidly when run at high RPM.

The second deviation was for test method RS101, which normally requires many close proximity measurements using a small radiating loop sensor.  For this large EUT, a non-deviated test plan would have required 60 hours’ worth of testing just for RS101.  MET was able to acquire a deviation from the Navy by getting permission to take measurements only near the unit’s electronic control panel.

A challenge that did not require a deviation was how to exhaust the diesel fumes out of the test chamber, while maintaining the 200 V/m EMC chamber’s RF shielding effectiveness.  Radiated emission ambients were shielded by using a small diameter steel exhaust tube that was secured to the chamber ceiling using metal-to-metal bonding techniques.

This project also required Data Item Description (DID) documentation.  Read more about DID documentation, its benefits, and process on the bottom of this Military EMC testing page

Have an upcoming MIL-STD-461 test requirement?  Ask about MET’s complimentary MIL-STD-461 Pre-Testing Program, which greatly increases your chance of first time compliance.  Contact us today.

Leave a Comment :, , , , , , , more...

Shielded Bulkhead Connectors Mitigate Ambient Emissions for Military & Avionic EMC Testing

by on Nov.12, 2013, under EMC, Military

Most Military/Avionic EMC test programs include radiated emissions testing.  This is the test method where the unintentional emissions which 

Figure 1 – Shielded bulkhead connectors


radiate from a piece of electronic equipment under test are measured with an antenna and spectrum analyzer and plotted against the required limit.  One issue which must always be dealt with during radiated emissions and other EMC test methods is control of the ambient emissions.  Ambient emissions such as television, radio, and wireless signals are attenuated by the shielded EMC test chamber; however, they can travel into the chamber on the cables which connect to support equipment outside of the chamber. 

If ambient emissions are not mitigated, they can appear as an EUT failure during testing.  One way to deal with this issue proactively is to use shielded cables with shielded bulkhead connectors or feed-through capacitors (Figure 1) to decouple the ambient signals to ground.  

In Figure 2, note how the ambient emissions exceed the Army ground limit at 28MHz when the power and signal 

Figure 2 – Ambient emissions using an oversize hole


cables pass directly through an oversize chamber hole.  In Figure 3, see how the ambient emissions have been attenuated below the noise floor of the measurement system, due to power cables connecting through 1uF feed-through capacitors and the shielded serial cable connects through a wall-embedded bulkhead connector. 

Utilizing our machine shop, steel panels, and a variety of connectors, MET Labs provides custom bulkhead panels for all military and avionics test programs, at no additional cost to the customer.  

Similarly, some electronic equipment requires water as part of its normal mode of operation, such as aircraft 

Figure 3 – Ambient emissions using shielded bulkhead connectors


galley equipment or water-cooled high power equipment.  MET has installed regulated water at its Military/Avionic EMC test chambers using bulkhead fittings that maintain the shielding effectiveness of the chamber.  MET has a variety of hoses and fitting available and trained staff to provide professional hookup to the equipment under test.  This too is a free service provided to all MET customers. 

Visit our quote center for an immediate EMC testing need, or Ask Pat, our resident electrical product compliance expert, for questions relating to chamber pass-throughs for water pipes and power & signal cables.

Leave a Comment :, , , , , , , , more...

Looking for something?

Use the form below to search the site:

Still not finding what you're looking for? Drop a comment on a post or contact us so we can take care of it!