Wireless & Radio Regulations Changing for FCC & RE Directive

by admin on Apr.16, 2014, under Europe, Wireless

At last week’s TCB Council Workshop in Baltimore, TCBs – including MET Labs – were given an update on upcoming wireless regulatory and compliance changes. Here are the most notable.

The FCC released a First Report and Order (ET Docket No. 13-49) on April 1, 2014 allowing devices in the U-NII-1 band to operate with higher power. The R&O also allows this band to be used outdoors, whereas this has only been an indoor band previously. Some of the key points in the First R&O are:

  • Devices operating in the U-NII-1 band will be allowed 30 dBm (1 W) conducted power, a PSD of 17 dBm/MHz and an allowance of a 6 dBi antenna. However, the maximum EIRP above 30 degrees elevation is limited to 21 dBm. 
  • The upper edge of the U-UNII-3 band has been extended by 25 MHz. Therefore, the band is now 5.725 – 5.850 GHz which is in line with the 15.247 DTS band. Both rule parts will be consolidated.
  • Bin1 radar waveform will be updated to better account for actual Terminal Doppler Weather Radar (TDWR) waveforms.

For equipment that is already certified, a Class II Permissive Change may be performed to update the device to the new rules. A Class II PC is performed when there are changes to the radio, such as addition of new antenna or if a rule change allows for additional provisions.

The new rules will take effect 30 days after being published in the Federal Register.  The publish date is expected soon.

The FCC has also updated the TCB Exclusion list. The exclusion list is now “empty.” Therefore, TCBs can now grant almost all applications, including equipment operating in the DFS bands and UWB equipment. However, TCBs will have to follow a Permit But Ask (PBA) procedure with the FCC to grant these devices. DFS equipment will still be independently tested by the FCC as before. But this is still expected to reduce the time to market for manufacturers.

The R&TTE Directive is getting a face lift.  It will now be called simply the Radio Equipment (RE) Directive. Telecommunications equipment will be moved over to the EMC Directive. The RE Directive will be limited to wireless RF transmitter devices and receivers. The use of the exclamation mark (i.e. !) and the NB number (if applicable) will not be required adjacent to the CE mark.

EN 300 328 v1.8.1 will become effective end of the year and any new radio device placed on or after this date will need to meet the new standard. The previous version of the standard will cease to give presumption of conformity with the requirements for Article 3(2) of the Radio Equipment Directive.

Want to know how these changes affect your products? Contact us to request a quick-response quote or schedule a free Lunchtime Review.

Leave a Comment :, , , , , , , , , , , more...

New Radio Equipment Directive Adopted by EU, Awaits Publication in OJ

by admin on Mar.31, 2014, under EMC, Europe, Wireless

The new Radio Equipment Directive (RED) was adopted by the Members of the EU Parliament (MEPs) on March 13, 2014 by 550 votes to 12.  It is now awaiting approval by the EU Council and then publication in the Official Journal (OJ) of the European Union.  Member states will have two years to transpose the rules into their national laws and manufacturers will have an additional year to comply.

The RED will take the place of the R&TTE Directive.  You can read more about this change in a previous post.  The draft directive lays down harmonized rules for placing radio equipment, including cellular telephones, car-door openers and modems, on the market. The new rules aim to keep pace with the growing number and variety of radio equipment devices and ensure that they do not interfere with each other or human health.

On the same day as the vote, MEPs called for a renewed effort to develop a common charger for certain categories of radio equipment, in particular mobile phones, because it would simplify their use and reduce waste and costs.

MEPs also backed provisions in the directive that would give the authorities additional market surveillance tools to detect radio equipment products that fail to comply with the new safety rules.  After an evaluation, the European Commission will identify those categories of equipment which will need to be registered before they can be put on the market. A similar database already operates in the U.S.

The next meetings of the RTTE Compliance Association (CA) and the European Union Association of Notified Bodies (EUANB) will take place May 19-20, 2014 in Amsterdam, The Netherlands. The details of the new RED will be the main subject of the meeting.

MET Labs will keep you updated on Compliance Today as new developments take place.  In the meantime, contact us today to test your radio equipment devices for Europe or any other major global market.

1 Comment :, , , , , , , more...

FCC Equipment Enforcement Focuses on HAC, U-NII & Digital Devices

by admin on Feb.06, 2014, under Wireless

The FCC took 20 enforcement actions in 2013 against RF equipment manufacturers and vendors for violations of the FCC’s marketing rules and technical standards. These actions include enforcement of Rule Parts 2, 15, 18, 22, 24, 27, 90, and 95.  Fish & Richardson P.C. summarizes FCC Equipment Manufacturer Violations from 2006-2013 here.

Four of the six largest violations (with Consent Decrees ranging from $100,000 to $280,000) involved the FCC’s hearing aid compatibility (HAC) rules. The HAC rules require handset manufacturers to report annually on their HAC compliance status, so manufacturers should expect that the FCC will continue to pursue HAC violations.

The FCC also continued its focus on Part 15 U-NII devices and digital devices. Violations involving equipment in the music industry, such as amplifiers and mixers, led to some of the year’s largest Consent Decree payments.

Effective September 13, 2013, the FCC raised the maximum penalty for most equipment violations from $112,500 to $122,500 per single violation.

The bottom line is that manufacturers and importers need to be careful about FCC compliance. Manufacturers with compliance issues can face delayed equipment approvals, contract disputes and lost sales opportunities, and even competitor or consumer lawsuits.

We can help keep you out of trouble.  MET has tested and/or certified thousands of products for FCC compliance over the last decade.  Get a quote now.

Leave a Comment :, , , , , , more...

Wireless Testing Regulatory Changes Discussed at TCB Council Workshop

by admin on Oct.31, 2013, under SAR, Wireless

At last week’s TCB Council Workshop in Baltimore, TCBs – including MET Labs – were given an update on upcoming wireless regulatory and compliance changes. Here are the most notable.

Japan SAR
Body SAR will be required for Japan starting April 1, 2014. The limit is 2 W/kg for body and 4 W/kg for arms and legs. The SAR is calculated over any 10g of tissue (as compared to 1g of tissue for FCC). Body SAR will be exempt for radio devices that have less than 20mW output power. The test method, for the most part, is harmonized with IEC 62209-2.  Read about SAR requirements in North America and Europe.

FCC Changes
There is a second FCC Notice of Proposed Rulemaking (NPRM) coming out early next year proposing still-unknown new certification procedures for FCC. This is in addition to the first NPRM that issued in February 2013 and which included significant changes to the FCC equipment authorization process.  FCC is calling it a “complete overhaul of the certification process.”  It is expected these changes will take effect in late 2014. 

Mexico and Israel MRAs
Mexico and Israel Mutual Recognition Agreements (MRAs) should be finalized late next year. When Phase I of the MRAs are implemented, U.S. manufacturers will be able to perform testing at a local U.S. lab for those countries.  Later, when Phase II is implemented each country will be able to certify products for the other.

For questions about these changes or for an immediate test need, visit our Quote Center.

Register now for MET’s free EMC & Wireless Design & Testing Seminar in Baltimore next week.

Leave a Comment :, , , , , , , more...

Wireless Equipment Subject to EN 300 328 V1.7.1 Needs Retesting

by admin on Oct.03, 2013, under Europe, Wireless

Late last year, Version 1.8.1 of EN 300 328 was adopted and published in the EU’s Official Journal (OJ).  This standard is the applicable standard for WiFi, Bluetooth, and other wideband transmitters operating in the 2.4GHz band.

Version 1.8.1 has an effective date of December 31, 2014, so declarations of conformity with the Radio and Telecommunication Terminal Equipment (R&TTE) Directive based on testing against EN 300 328, v1.7.1 would need to be re-evaluated before the end of 2014 for devices going into the EU market after this date. Devices already in the market will be grandfathered in.

However, at the same time as the v1.8.1 adoption, a note was added to v1.7.1 in the OJ, stating that part of the new v1.8.1 requirements – medium utilization factors – needed to be immediately implemented and tested.

The upshot: Radio modules tested and found compliant to v1.7.1 need to be retested due to the additional requirement – there is no longer a presumption of conformity with the R&TTE Directive.  This has caused confusion and headache for manufacturers and some test labs.

In conclusion, wireless modules tested to the un-amended v1.7.1 need to be retested now to the latest version of the standard.  By January 1, 2015, all wireless equipment in the 2.4GHz band needs to be tested to v1.8.1.

Request an immediate quotation.

Contact us for an overview of changes specified in v1.8.1.

Leave a Comment :, , , , , , , more...

RF Survey Assures Wireless Connectivity

by admin on Sep.23, 2013, under EMC, Wireless

MET Labs recently completed a novel RF survey for a large federal government agency laboratory, to determine whether refrigerators and freezers on multiple floors in multiple buildings are receiving a sufficient-strength wireless signal with minimal noise.

Here are some of the project details, as well as surveyed information:

  • Operating frequencies: 2.4 GHz ISM Band; 5 GHz UNII Bands; 5.8 GHz ISM Band
  • Acceptable signal strength: -85dBm to -35dBm
  • Minimum Signal-to-Noise Ratio: 20dB
  • Access Point/Channels in Use Information
  • Maximum Data Rate
  • Retry Rate Distribution
  • Loss Rate Distribution
  • Operating Mode Information (Legacy/HT/Mixed HT)
  • 20/40MHz Channel Information
  • Tx/Rx MCS Index Information

MET used this test method:

  1. The calibrated 802.11a/b/g/n client radio was connected to a laptop running RF monitoring software.
  2. A passive and active survey was taken using the software and the radio was moved throughout the test site.
  3. In each lab and corridor within labs, measurements were taken of the strength of the received WLAN carriers.
  4. All the measurements were mapped to floor plans of the test site. Signal Strength, SNR, and other wireless signal properties were noted throughout and compared to the test requirements.

In situ RF surveys are a good way to ensure wireless-enabled equipment receives an uninterrupted signal that is free of excessive noise.  For more information about conducting RF surveys, contact MET.

Leave a Comment :, , , , , more...

FDA Issues Guidance for Integration of RF Wireless Technology in Medical Devices

by admin on Aug.26, 2013, under EMC, Medical, Wireless

Due to rapid growth in medical devices that incorporate RF wireless technology, on August 14 the Food and Drug Administration (FDA) released final guidance for integrating radio frequency (RF) wireless technology in medical

MET Engineer Doing a Medical Product Evaluation

devices.  The guidance is recommended, but not mandatory.

FDA said its recommendations cover devices that are implanted or worn on the body, and others intended for use in locations such as hospitals and clinical laboratories.

The guidance discusses issues that may affect the safe and effective use of medical devices that incorporate RF wireless technology, including electromagnetic compatibility (EMC).

The use and deployment of RF wireless technology in and around medical devices is an increasing concern because the electromagnetic environments where medical devices are used might contain many sources of RF energy, and the RF wireless emissions from one product or device could potentially affect the function of another, the agency said.

FDA says these issues should be considered for all medical devices that incorporate RF wireless technology, such as Wireless Medical Telemetry Service (WMTS); Medical Device Radiocommunication Service (MedRadio) as well as Medical Micropower Network (MNN) and Medical Body Area Network (MBAN); cellular communication chipsets; and RF identification (RFID) products.

FDA recommends that EMC be an integral part of the development, design, testing, and performance for RF wireless medical devices. Beyond FCC requirements, FDA recommends using risk analysis to identify any potential issues associated with EMC and determining risk acceptability criteria based on information about the device and its intended use, including foreseeable misuse, sources of environmental EMD (e.g., radio transmitters, computer RF wireless equipment), and the potential for RF emissions to affect other devices.

IEC 60601-1-2 is a FDA-recognized consensus standard for EMC, but it does not adequately address whether the wireless communications will operate properly in the presence of in-band EMD (e.g., other RF emissions overlapping the frequency band utilized by the medical device wireless signals). Therefore, the medical device’s wireless communication(s) should be actively transmitting while testing for susceptibility during all EMC immunity testing.

EMC considerations for active implantable medical devices are covered under documents such as the ISO 14708-1 standard (see Appendix B).

FDA worked closely with the Federal Communications Commission (FCC) to develop this guidance.

MET Labs teamed with FDA on a voluntary Program to Test Medical Devices for RFID Interference.  Find out more about the Program. 

MET also tests medical equipment for product safety to 60601-1 3rd edition, for EMC compliance to 60601-1-2, and does performance testing for leading medical device manufacturers.

MET’s Annual Global Compliance Seminar in September will include a session on Electrical Medical Equipment Approvals for EU.  Register here.

Leave a Comment :, , , , , , , , more...

SAR Testing Exclusion a Function of Proximity to Body, Max Output Power

by admin on Aug.05, 2013, under SAR, Wireless

To determine whether your product needs Specific Absorption Rate (SAR) testing, there are a few items to consider. 

MET's DASY SAR Testing System

First, is the device operated within 20cm (7.87”) of the head or body?  If no, then SAR does not apply. If yes, then SAR does apply, but testing may be excluded based on the device’s output power.

The maximum conducted output power is the average conducted power at the antenna port plus any production tolerance.  When calculating output power, keep in mind the device’s duty-cycle.  For SAR, the on and off time-averaged power is to be considered. So if not already accounted for, the duty cycle factor may be applied directly to the output power.  

To determine whether the output power is below the threshold for testing, it depends on where the device is being certified for. Here are some common jurisdictions:

United States
The Federal Communications Commission (FCC) utilizes a formula to determine SAR test exclusion in KDB 447498 D01v05 Section 4.3.  For separation distances of <50mm if the following equation results in <3.0 then test exclusion for 1g SAR applies: (Output power, mW) / (separation distance, mm) x (sqrt(freq), GHz).  Use 5mm for separation distances <5mm.

Industry Canada stipulates the exclusion threshold in RSS-102.  For 3kHz – 1GHz it is 200mW, for 1GHz – 2.2GHz it is 100mW, for 2.2GHz – 3GHz it is 20mW and for 3GHz – 6GHz it is 10mW.  Note that per Industry Canada, output power is always the higher of conducted or equivalent isotropically radiated power (EIRP).

In the EU, the threshold is given in IEC/EN 62479:2010.  A simple formula is used: Pmax = SARmax * m. 

For each jurisdiction, if the devices output power is less than the threshold, SAR testing is not required.  However, in most cases, a statement showing why it is excluded and how it still meets the requirements must be submitted.

This post is a good summary of SAR testing exclusions, but is not inclusive of all scenarios. Contact us to find out if your product is subject to SAR testing in these or other global markets.

Sign up for one of our upcoming complimentary wireless product testing seminars in Silicon Valley, California:

Leave a Comment :, , , , , , more...

Module Approvals for US, Canada, Europe & Japan Discussed at TCB Council Workshop

by admin on Apr.23, 2013, under EMC, Wireless

At the recent TCB Council Workshop in Baltimore, TCBs – including MET Labs – were given a refresher on the fundamentals of modular approvals.  Here is a summary.

In the U.S., wireless module approvals fall into one of three categories:

  • Full modular approval – A radio module to be approved for use in any host and sold to anyone
  • Limited modular approval – A radio module to be approved for restricted use
  • Split modular approval – A radio module where the transmitter firmware is held on a host

FCC Full Modular Approval
Full approval is defined in FCC Part 15.212.  The module will have the FCC ID; any host incorporating the module will show that the module is contained within it: Contains FCC ID: XXXYYYYY. 

There are 8 criteria for full approval:

  1. Transmitter must have its own shield
  2. Must have buffered modulation/data inputs
  3. Must have power supply regulation
  4. Must meet Part 15 antenna requirements
  5. Must be tested in stand-alone configuration
  6. Must be labelled with the FCC ID
  7. Must meet its own FCC rule part
  8. Must meet RF exposure requirements

The module host must still comply with its own requirements (e.g. Part 15B, Verification or DoC).

FCC Limited Modular Approval
FCC limited approval is for modules that don’t meet all eight criteria for full approval.  Limited approval is possible when the host or end environment is known:

  • The module will be certified for a range or series of devices, similar in construction
  • The module will be certified for use by the grantee or an authorized OEM
  • The module will be tested in a representative host

FCC Split Modular Approval
Split approval can only be certified by the FCC, and is included on the TCB Exclusion List.

For module approvals, Knowledge Database (KDB) 996369 is key.  Other important KDBs include:

  • KDB 784748 contains labelling requirements
  • KDB 447498 contains RF exposure, MPE and SAR test guidance
  • KDB 616217 contains SAR host guidance

Canada IC
Canada IC modular approvals are to RSS-GEN section 3.2, with requirements and labelling similar to FCC.  Unlike FCC, unlicensed modules use the same eight criteria as licensed modules.

For limited modular approval, guidance comes from RSS-GEN section 3.2.3, and is also similar to FCC.

MET is an FCC TCB and an Industry Canada CB.

Europe R&TTE Directive
In the EU, there is no certification or modular approval, but rather Declaration of Conformity (DoC).

A module placed on the market should be fully assessed to the R&TTE Directive (Radio, EMC and Safety), either as an independent radio or as a radio component intended for use within a host.

There are not eight criteria, so the manufacturer must assess to all possible installation environments.  By CE Marking a module, you are stating that it will comply in its intended use and environment.

For integrating modules into a host, the host company is ultimately responsible for compliance, unlike with the FCC and IC.  However, previous testing may be taken into consideration by the module integrator.  If module testing is trusted for the DoC of host, the module’s Technical Construction File (TCF) becomes part of the host’s TCF.

For the R&TTE Directive, these guidance documents exist:

  • ETSI TR 102 070-1 – Application of EMC standards
  • ETSI TR 102 070-2 – Application of Radio standards
  • R&TTECA, TGN 01 – Requirements for a Final Product that Integrates an R&TTE Directive Assessed Module

Read about the proposed changes to the R&TTE Directive.

“Modular approvals” do not appear in Japanese radio law.  However, in July 2012, MIC announced that a module could be certified as a radio device, even if it used soldered connections, if it was the type: WLAN, Bluetooth, Zigbee, etc.  In other words, a FCC 15.247 type of device.  It is not modular approval, but it does allow soldered modules to be certified as radios.

In February 2013, MIC announced that modular approvals will be integrated into Japanese radio law.  Requirements are being developed now.  Currently, there is no timeline or estimated implementation date.

For questions or for a modular approval quote, visit our Quote Center.

We will be at CTIA Wireless next month.  Request to meet with us.

Leave a Comment :, , , , , , , , , , , more...

FCC Proposes Big Changes to Part 15 & 68 Electrical Equipment Approval Process

by admin on Mar.20, 2013, under EMC, Wireless

The U.S. Federal Communications Commission (FCC) has proposed important changes to its equipment testing and authorization program under Part 15 and Part 68 of its rules.  The FCC says the changes will streamline the approval process and expedite the introduction of new devices to the market.

In a Notice of Proposed Rulemaking issued last month, the FCC proposed a number of changes to its existing equipment authorization program. The key proposed changes include:

TCB Accreditation – Telecommunications certification bodies (TCBs) – like MET Labs – will be accredited in accordance with the requirements of ISO/IEC 17011 and ISO/IEC 17065. These standards replace ISO/IEC Guides 58, 61 and 65.

Testing Laboratories Accreditation – Laboratories that test equipment subject to certification or approval under any of its rules must be accredited to ISO/IEC 17025.

TCB Authority – The FCC will no longer directly issue any grants of equipment authorization. Instead, TCBs will authorize and deny all products subject to certification.

Post-Market Surveillance – For post-market surveillance, the FCC will specify the number and types of samples that a TCB must test.

Assessing TCB Performance – NIST will assess TCB performance. The Commission also outlined a process to address TCB non-performance issues.

Measurement Procedures – ANSI C63.10-2009 will be the procedure used to determine the compliance of intentional radiators, and ANSI C63.4-2009 will be the procedure for assessing unintentional radiators.

We understand these proposed changes are likely to go through without significant modification, but first there is a comment period to elicit feedback.  Comments on the Commission’s proposed rule changes are due by late March here.

Read the complete text of the FCC’s Notice of Proposed Rulemaking regarding important changes to its equipment testing and authorization program under Part 15 and Part 68.

MET Labs is an accredited testing laboratory and TCB.  Contact us for FCC Testing or Certification assistance.

Leave a Comment :, , , , , , , , , , , more...